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We demonstrate that the law of the rectilinear coexistence diameter in two-dimensional mixtures of non-
spherical colloids and nonadsorbing polymers is violated. Upon approach to the critical point, the diameter
shows logarithmic singular behavior governed by a term t ln t, with t the relative distance from the critical
point. No sign of a term t2� could be detected, with � the critical exponent of the order parameter, indicating
a very weak or absent Yang-Yang anomaly. Our analysis thus reveals that nonspherical particle shape alone is
not sufficient for the formation of a pronounced Yang-Yang anomaly in the critical behavior of fluids.
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Critical phenomena have been studied extensively for de-
cades. Nevertheless, a few important issues remain contro-
versial. One long-standing problem concerns the critical be-
havior of the so-called coexistence diameter of fluids
undergoing a phase transition from liquid to gas �the coex-
istence diameter is defined as the average density of the two
coexisting phases�. In 1964, Yang and Yang showed that the
divergence of the constant-volume specific heat at the critical
point implies that either d2p /dT2 or d2� /dT2 or both diverge
�1�. Here, T is the temperature, p the pressure, and � the
chemical potential. A remarkable consequence, realized only
recently by Fisher and co-workers �2�, is that the divergence
of d2� /dT2 implies that the coexistence diameter � gains an
additional term t2� which, assuming Ising universality, domi-
nates the previously recognized term t1−� �3,4�. As usual, t is
the relative distance from the critical point; � and � are the
critical exponents of the specific heat and the order param-
eter, respectively. The coexistence diameter near the critical
point thus reads as

���0 = �cr�1 + A2�t2� + A1−�t1−� + A1t� , �1�

with �cr the critical concentration, and nonuniversal ampli-
tudes Ai. The divergence of d2� /dT2 is called a Yang-Yang
�YY� anomaly, and A2��0 if one is present. For symmetric
fluids, such as the Widom-Rowlinson mixture �3�, d2� /dT2

remains finite, in which case A2�=0 �5�. However, realistic
fluids are typically asymmetric, in which case a YY anomaly
cannot be ruled out.

Indeed, evidence for a YY anomaly was found in simula-
tions of asymmetric three-dimensional �3D� fluids �6,7�. Ex-
periments on propane and carbon dioxide also show evi-
dence for a weak YY anomaly �8�, while for 3He the
situation is less clear �9,10�. However, for 3D fluids, the
analysis is extremely difficult. Assuming 3D Ising universal-
ity with ��0.109 and ��0.326 �11�, there are two singular
terms in Eq. �1� that need to be distinguished not only from
each other, but also from the leading analytic background
term A1t. A direct observation of the term t2� is consequently
very difficult. Only very recently, after it was recognized that
the amplitudes A1−� and A1 are coupled, could both singular
terms in Eq. �1� be resolved from experimental data �12�.

Nevertheless, due to the competition between terms in Eq.
�1�, investigations of the coexistence diameter in 3D fluids
remain challenging. An attractive alternative, where the com-

petition between singular terms is less severe, is to consider
a fluid where the specific heat diverges logarithmically at the
critical point, implying �=0. The critical behavior of the
diameter is then given by

��=0 = �cr�1 + A2�t2� + A0t ln t + A1t� . �2�

In other words, the term t1−� is replaced by a �much weaker�
logarithmic singularity �13�. In order to detect the YY
anomaly, one thus needs to distinguish power law behavior
from logarithmic behavior, which is expected to yield a more
pronounced numerical signature. To this end, one could con-
sider a 2D fluid, where �=0 and �=1/8 �assuming 2D Ising
universality�. Note that mean-field systems do not qualify,
despite having �=0. For mean-field systems, �=0 corre-
sponds to a finite discontinuity in the specific heat, yielding a
purely rectilinear diameter �13�. Still, even though the nu-
merical analysis of a 2D fluid with Ising critical behavior
may become simpler, this is no guarantee that a YY anomaly
will be found. The absence or presence of a YY anomaly is a
nonuniversal feature: A2� may well be zero. It is not com-
pletely clear which features in a fluid determine the strength
of the YY anomaly. Obviously, the fluid must be asymmetric.
In addition, there are experimental indications that molecular
shape and symmetry, in particular departures from spherical
form, are important contributing factors �8�. From these con-
siderations, it appears that the “minimal” fluid in which a YY
anomaly may most easily be found should �1� be two dimen-
sional and exhibit a 2D Ising critical point, �2� be asymmet-
ric, and �3� contain nonspherical particles.

In this work, we will investigate a fluid with precisely
these properties, and focus on the critical behavior of its
diameter. We consider a 2D version of the colloid-polymer
model of Asakura and Oosawa �AO� �14�, but generalized to
nonspherical colloids. In the original AO model, colloids and
polymers are treated as spheres in 3D, assuming hard-core
interactions between colloid-colloid and colloid-polymer
pairs, while polymer-polymer pairs can interpenetrate freely
�the AO model is thus clearly asymmetric�. Since the poly-
mers may overlap freely, their translational entropy is in-
creased significantly when the colloids group together.
Hence, there is an effective �depletion� attraction between
the colloids. Provided polymer concentration and size are
sufficiently large, the attraction is strong enough to drive
phase separation in the AO model, whereby the system splits
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up into a colloid-rich �polymer-poor� phase and a colloid-
poor �polymer-rich� phase. As expected for systems with
short-ranged interactions, the corresponding unmixing criti-
cal point belongs to the 3D Ising universality class �15�.
Hence, it is anticipated, although one should plan to check,
that the AO model in 2D will exhibit a 2D Ising critical
point. The effect of nonspherical particle shape is incorpo-
rated by modeling the colloids not as spheres, but as line
segments. Our minimal model is thus a 2D mixture of col-
loidal line segments of length lc and effective polymer disks
of diameter �p, interacting via AO potentials. In other words,
overlaps between line segments as well as overlaps between
line segments and polymer disks are forbidden, while the
polymer disks may overlap freely.

The aim of this work is to check if a YY anomaly in this
model can be found. We will do so using computer simula-
tion and finite size scaling �FSS� in the grand canonical en-
semble. In this ensemble, the total area of the system A, the
temperature T, and the colloid �polymer� fugacity zc �zp�, are
fixed, while the number of colloids �Nc� and polymers �Np�
fluctuates. The thermal wavelength is set to unity, such that
zp reflects the average concentration Np /A that a pure phase
of polymers would have �recall that such a phase is simply
an ideal gas�. The remaining lengths are expressed in units of
lc. The colloid-to-polymer size ratio is set to �p / lc=0.95. At
the coexistence colloid fugacity, it is expected that the mix-
ture phase separates into a colloid-poor phase �the gas� and a
colloid-rich phase �the liquid�, provided that the polymer
fugacity exceeds a critical value zp,cr. The phase separation is
thus driven by zp, which therefore plays a role analogous to
inverse temperature in gas-liquid transitions of simple fluids.
The relative distance from the critical point is written as
t�zp /zp,cr−1, and �G��L� denotes the concentration
�c�Nc /A of colloids in the gas �liquid� phase. A natural
order parameter is the density gap ����L−�G� /2, while the
coexistence diameter reads as ����L+�G� /2. In the limit
t→0, we expect critical power law behavior �� t� for the
order parameter, and Eq. �2� for the coexistence diameter.

For our minimal model, the critical point must be located
first, in particular the value of zp,cr. Next, 2D Ising universal-
ity of the critical point must be established, after which the
diameter can be investigated. To “guide” the simulations, the
phase diagram is obtained approximately first, using a simple
mean-field �MF� theory based on a free-volume approach for
2D rod-polymer mixtures. The free-volume fraction and the
free energy for a pure system of 2D lines are derived from
scaled particle theory �16�. The free energy is exactly the
same as the one obtained within Onsager’s second virial
theory �16�. The resulting binodal is shown in Fig. 1. The
theory predicts the critical point at �cr

MF�0.550 and
zp,cr

MF �2.054. No nematic ordering of the colloids is predicted
in the direct vicinity of the critical point: the coexisting
phases are isotropic. Since the theory ignores critical fluctua-
tions, it is expected that zp,cr

MF underestimates the true value
zp,cr significantly. Nevertheless, the theoretical result is im-
portant because it provides an indication in which regime the
�time consuming� simulations need to be carried out. The
simulations are performed in the grand canonical ensemble,
on a 2D square of size A=L	L using periodic boundary

conditions. We measure the distribution PL��c �zp ,zc�, defined
as the probability of observing a system with colloid concen-
tration �c, at fugacities zp and zc, with L the system size. The
insertion and removal of particles is performed using a clus-
ter move �15�, combined with a biased sampling scheme �17�
to overcome the free-energy barrier separating the phases,
and histogram reweighting �18�. To obtain a single distribu-
tion, around 100 CPU h for a small system �L=22�, and
350 h for a large system �L=30�, are required.

A standard route to obtain zp,cr in simulations, is to mea-
sure the L dependence of the cumulant U4= �m2	2 / �m4	 along
some path in the ��c ,zp� plane. Here, m=�c− ��c	, and �·	
denote grand canonical averages. The cumulant becomes
system-size independent at the critical point �19�. Plots of U4
as function of zp for different system sizes L are expected to
show a common intersection point, leading to an estimate of
zp,cr. Moreover, the value of the cumulant U4

� at the intersec-
tion point is universal, and this gives an indication of the
universality class. The result is shown in the upper frame of
Fig. 2. The data were obtained using the colloid fugacity at
which �m2	 is maximized �6�. From the intersections, we
obtain zp,cr=3.881±0.005, where the error reflects the scatter
in the various intersection points. At the intersection point
U4

��0.85, which is very close to the accepted 2D Ising value
U4

��0.856 �20� �horizontal line in Fig. 2�. While this already
suggests 2D Ising universality, additional confirmation is
obtained from the critical exponents. We consider � and 
,
with 
 the critical exponent of the correlation length. Here, 

is extracted from the cumulant slope Y1�dU4 /dzp at the
critical value of zp. One expects that Y1�L1/
, with L the
system size. The lower frame of Fig. 2 shows Y1 as a func-
tion of L, where the above estimate of zp,cr was used. The
line is a linear fit through the origin, which describes the data
very well, and thus confirms the 2D Ising value 
=1. To
obtain �, we apply the FSS algorithm of Ref. �7�, using
system sizes L=20–30. Starting with zp significantly above

FIG. 1. Upper frame: Binodals of the 2D colloid-polymer mix-
ture of this work, obtained using mean-field theory �MF� and simu-
lation �SIM�; circles mark critical points. Lower frame: Order pa-
rameter � as function of t, obtained using simulation and FSS; a
value zp,cr=3.877 in t was used.
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its critical value, the algorithm proceeds by plotting U4 as a
function of the average colloid concentration ��c	. The re-
sulting plot reveals two minima, located at �− and �+, with
respective values Q− and Q+ at the minima. Defining the
quantities Qmin= �Q++Q−� /2, x=Qminln�4/eQmin�, and
y= ��+−�−� / �2��, the points �x ,y� obtained for different sys-
tem sizes L should, in the limit far away from the critical
point, collapse onto the line y=1+x /2. Recall that � is the
order parameter in the thermodynamic limit at the considered
fugacity zp, precisely the quantity of interest, which may thus
be obtained by fitting until the best collapse onto 1+x /2
occurs. In the next step, zp is chosen closer to the critical
point, the points �x ,y� are calculated as before, but this time
� is chosen such that the new data set joins smoothly with
the previous one, yielding an estimate of the order parameter
at the new fugacity. This procedure is repeated as closely as
possible to the critical point, where � vanishes. The output
of the algorithm, � as a function of zp, is then fitted
to �� t�, in order to estimate zp,cr and �. We obtain
zp,cr=3.877±0.001, which is consistent with the �less pre-
cise� analysis of Fig. 2. Shown in the lower frame of Fig. 1 is
the order parameter as a function of t, on double logarithmic
scales. The line has slope �=1/8, and confirms the 2D Ising
exponent in the simulation data. The FSS algorithm also
yields the order parameter scaling curve y= f�x� �7�, with x
and y defined as above, shown for completeness in the upper
frame of Fig. 3. Away from the critical point �x→0�, the
scaling curve has the limiting form y=1+x /2; at the critical
point, the scaling curve diverges. The significance of the
scaling curve is its universal character: all systems with
a 2D Ising critical point should yield a scaling curve for
the order parameter similar to the one shown
here �7�.

At this point, sufficient evidence for 2D Ising universality
has been provided. Since the order parameter is a scalar, and
since the interactions are short ranged, there are in any case
no theoretical grounds to contemplate a different universality
class. Hence, we will now consider the coexistence diameter.

To obtain the diameter, the FSS algorithm of Ref. �7� is used.
Similarly, also for the coexistence diameter, a scaling curve
y�=g�x�� is generated, based on different quantities x� and y�
defined in Ref. �7�. In contrast to the order parameter, the
scaling curve of the diameter is not universal. For our model,
the corresponding curve is shown in the lower frame of Fig.
3. For small x�, it correctly approaches the exact limiting
form y�=x� /2 �7�. The curvature at x��0 already suggests
singular behavior. According to Eq. �2�, this may reflect the
YY anomaly, or logarithmic behavior, or both. To quantify
this, the diameter itself is shown in the upper frame of Fig. 4.
The quality of the data is such that � can be resolved down to
t�0.0015. A fit to Eq. �2� yields �cr=0.9270±0.0006,
A2��0, A0=−0.29±0.01, and A1=0.76±0.03, where the er-

FIG. 2. Cumulant analysis near the critical point. The top frame
shows U4 as a function of zp for various system sizes L as indicated.
The lower frame shows the cumulant slope Y1 at zp,cr as a function
of L.

FIG. 3. Upper frame: Order parameter scaling curve y= f�x�
�solid line�. Following convention �7�, the scaling curve is raised to
a negative exponent with �=1/�, where the 2D Ising value
�=1/8 was used. Also shown is the small-x limiting form
y=1+x /2 �dashed line�. Lower frame: Coexistence diameter scal-
ing curve y�=g�x�� �solid line�. The dashed line shows the small-x�
limiting form y�=x� /2.

FIG. 4. Upper frame: Coexistence diameter � as a function of t
�circles�. The dashed line is a fit to Eq. �2�. Lower frame: � as a
function of ln t �circles�. The straight line �dashed� confirms the
logarithmic nature of the divergence. In both plots, zp,cr=3.877 in t
was used.
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ror reflects the scatter resulting from the range over which
the fit is performed. The fit describes the data perfectly well,
without the need for a term t2�, indicating logarithmic singu-
lar behavior. In other words, despite the nonspherical particle
shape in our model, the present analysis does not reveal a
YY anomaly. For completeness, in the lower frame of Fig. 4,
the derivative ��d� /dt is plotted as a function of ln t. In the
case of singular behavior, � is expected to diverge as t→0.
The �logarithmic� divergence is clearly visible. Finally, by
combining the coexistence diameter and order parameter
data, the binodal in the thermodynamic limit was con-
structed, see the top frame of Fig. 1.

In conclusion, we have shown that 2D colloid-polymer
mixtures, with nonspherical colloids, do not display a pro-
nounced YY anomaly, at least not for the colloid-to-polymer
size ratio q=0.95 considered by us. Although the diameter
becomes singular upon approach to the critical point, the
singularity is logarithmic, and well described by the theoreti-
cally expected term t ln t. While it has been suggested �8�
that nonspherical particle shape may be an important contrib-
uting factor to the formation of the YY anomaly, this seems
not to be the case for our 2D model. If a YY anomaly is
present in our 2D model nevertheless, it is very weak, and

negligible down to t�0.0015 accessible in our simulations.
In contrast, our results may be compatible with the very re-
cent Ref. �12�, where it is argued that a YY anomaly is ex-
pected when ��=�crai is small, where ai represents the typi-
cal interaction volume. For our model, ai�q2, and so
���0.8. This value even exceeds ���0.75 of the Widom-
Rowlinson mixture �3�, for which no YY anomaly was de-
tected either �5�. In order to detect a YY anomaly in our 2D
model, it seems that smaller size ratios q are required; this
could be a topic for further simulations. It is tempting to
speculate if the 2D model considered in this work can also be
realized experimentally. Colloidal particles, due to their me-
soscopic size, pose many advantages over atomic fluids. This
has already enabled the investigation of critical phenomena
in 3D, whereby the particles are visualized directly using
confocal microscopy �21�. Other applications may be found
in order-disorder phase transitions in adsorbed monolayers of
atoms or small molecules at surfaces.
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